Монослой металла с тремя «тройными» молекулами кислорода.
Долгие 10 лет в Беркли, что в пригороде Сан-Франциско, материаловеды тамошнего университета занимались доведением до ума идеи отрицательного конденсатора (Negative Capacitance). В нем используется необычный физический эффект, позволяющий резко снизить энергозатраты, например, чипов. Кстати, суммарная потребляемая энергия всех чипов в мире сегодня сравнялась с энергией, которую потребляет весь транспорт.
В 2008 году была выявлена высокая диэлектрическая (изолирующая) константа диоксида гафния. Этот материал широко применяется и сегодня, когда чипы становятся все тоньше, миниатюрнее и требуют все больше энергии. Их главный компонент – быстродействующие переключатели (switches) транзисторов.
Новый энергосберегающий транзистор, созданный физиками в Беркли. |
В 2017 году в Беркли новый конденсатор поместили между двумя слоями оксида алюминия (Al2O3), расположенными на кремниевой подложке. Но лабораторный успех не гарантировал производственного. Поэтому решено было добавить допинг в виде окислов гафния и циркония (HfZrO2), ограничив ток пленкой нитрида титана (TiN). В качестве проводника испробовали также и обычный песок, то есть SiO2.
Еще через два года в Беркли сообщили об успешном создании ультратонкого кристалла Hf02-ZrO2, который был использован в транзисторе на основе 3D-слоев, размещенных друг над другом.
Схема нового «столпа» представляет собой верхний ферроэлектрический – проводящий – слой из трех металлов (PbZrTi). Под ним расположен диэлектрический – изолирующий – слой титаната стронция (SrTi), который и обеспечивает отрицательную конденсацию – удержание электронов, не давая им «растечься», унося энергию. Нижний металлический слой играет роль субстрата, при этом толщина его и верхнего слоя равна 6 ангстремам (0,6 нанометра), а среднего – не превышает 20 ангстрем (2 нм).
Можно напомнить, что первый транзистор, созданный Джоном Бардиным в 1948 году – за что он получил Нобелевскую премию, – был размером с ноготь мизинца, а роль транзисторов первой ЭВМ «Эниак» выполняли телевизионные трубки.
И здесь мы попадаем в область уже меж- и внутриядерных взаимодействий. Свое представление об «устройстве» ядерной материи имеют теперь и финские ученые.
Протон, вырвавшийся из ядра атома лютеция (желто-голубое). Иллюстрации Physorg |
Операции с атомами ученые делят на расщепление (fission) и синтез (fusion). Как раз в результате процесса fusion атомов никеля и рутения в ускорителе из водорода получается гелий, а также лютеций с необычным весом 149 (масса стабильного изотопа – 175). Живет лютеций-149 всего-то 450 +/– 100 наносекунд, после чего испускает протон, превращаясь в иттербий-148 (найденный около шведского Иттерби).
Этот акт непосредственно и зафиксировали на своем ускорителе сотрудники университета в г. Йювяскюля, что к северу от Хельсинки. Ученые увидели при этом, что «беременное» протоном ядро обретает формы тыквы (pumpkin), которую использовали в названии статьи в журнале Physical Review Letters: «Ядро в форме тыквы излучает протон с рекордной скоростью».
Остается ждать новых столь же интересных сообщений с мирного ядерного фронта.
комментарии(0)