Гравитационная линза Эйнштейна.
Знаменитый английский физик, а тогда еще молодой английский астроном Артур Эддингтон, специально отправился за океан в Бразилию, чтобы наблюдать там солнечное затмение 1919 года. По ходу дела от проверил теоретическое предсказание Альберта Эйнштейна. Тот полагал, что корпускулы фотонов, практически не взаимодействующие с межзвездным и межгалактическим веществом (о чем свидетельствует красное смещение далеких галактик, родившихся чуть ли не сразу после Большого Взрыва), тем не менее испытывают воздействие гигантских звездных масс.
Тем самым автор общей теории относительности (ОТО) постулировал существование в пространстве гравитационных линз. Эти астрофизические объекты позволяют земным астрономам наблюдать звезды, закрытые, например, Солнцем. Эйнштейну через два года дали Нобелевскую премию, которую следовало бы по справедливости разделить с англичанином. Эддингтона, кстати, избрали членом-корреспондентом Академии наук СССР.
Свет представляет собой электромагнитное излучение, или поток фотонов – волновых пакетов. Они объединяют два взгляда на природу световых квантов: Ньютона и Эйнштейна, считавших, что свет – это поток корпускул, частиц, и Лейбница, уверенного в том, что свет представляет собой волну. Позицию Лейбница подтвердил лондонский глазной врач Томас Юнг, открывший интерференцию световых волн, то есть чередование минимумов и максимумов светимости при наложении световых пучков.
Решетчатая структура, созданная в Калифорнийском университете в Лос-Анджелесе, на основе индия (красный) и мышьяка (голубой). Иллюстрации Physorg |
Изгибу, однако, подвержен пучок электронов. При его движении по искривленной траектории и возникает рентгеновское излучение, которое столь же прямолинейно, как и обычный свет. Но ведь он изгибается (отклоняется, по словам Эддингтона) под действием гравитации, следовательно, принципиального физического запрета этому нет.
Сотрудники Калифорнийского университета в Лос-Анджелесе взяли на вооружение плазмоны – электронные волны, генерируемые на поверхности благородных металлов и решетчатых структур. Плазмон представляет собой совокупность электронов или электронной плазмы на поверхности, дающих единую волну после возбуждения светом.
Ученые создали решетчатую наноантенну из индия и мышьяка (InAs), дающую как электроны, так и дырки. Решетчатая структура осуществляет изгиб света, который оказывается надежно связан со структурой полупроводника. Это ведет к ускорению возбужденных светом электронов (photo-excited surface plasmons). Эти электроны затем «избавляются» от избыточной энергии, испуская фотоны с разной длиной волны.
Авторы исследования пишут, что им удалось объединить функциональность плазмон-состояний. И это дало конверсию длины волн в терагерцовом режиме. С одной стороны, это расширяет возможности квантовой оптики, так как «центральная» волна 1550 нм дает целый спектр волн разных цветов. А с другой стороны, такой подход на четыре порядка эффективнее методов нелинейной оптики.
комментарии(0)