Получение из гибкого графена (в правом нижнем углу) нановолокон и сплетение их в пучки (bundles).
Сегодня ученых занимают вопросы прямого наблюдения и регистрации внутримолекулярных перемещений электронов в ходе химреакций. Характерные времена – фемтосекунды (10–15 с). Ученые возбуждают светом молекулы, чтобы затем проследить за поведением электронов и ядер. Делается это, в частности, и для того, чтобы проследить за квантовыми эффектами, которые начинают проявлять себя на ангстремных (10–10 м) и нанометровых (10–9 м) расстояниях.
При всевозрастающей миниатюризации злободневной становится и проблема рассеяния тепла. Одно из возможных решений – использование алмаза, обладающего превосходной теплопроводностью. Ученые давно научились делать искусственные алмазы (Нобелевская премия за это была вручена в 1946 году). Но в лабораториях получают алмазы с кубической кристаллической решеткой. Они дешевле природных алмазов, кристаллическая решетка которых состоит из углеродных тетраэдров, или четырехвершинников. Неудивительно, что физики давно мечтали получить материал, который тверже естественного алмаза. Похоже, что в Университете штата Вашингтон в г. Сиэтл (США) задачу успешно решили.
Новый метод получения гексагональных алмазов использует пороха и сжатый газ, чтобы разогнать до скорости около 25 тыс. км/ч прозрачные графитовые диски размером с мелкую монету и впечатать их в прозрачный материал. Столкновение генерирует ударную волну в диске, преобразуя графит в шестивершинный алмаз. Для подтверждения этого авторы использовали лазер, с помощью которого определяли два важнейших параметра – твердость и жесткость, или способность сопротивляться деформациям решетки. Статья ученых, которая называется «Эластичные модули гексагонального и кубического алмазов, полученных при шоковой компрессии», опубликована в журнале Physical Review B.
Алмаз – это аллотропическая (иная) форма углерода. В этом же ряду аллотропических форм – графит, сажа, графен. Последний представляет собой моноатомный слой углеродных атомов, образующих шестичленные «соты».
Схема эксперимента по определению точности работы атомных часов, расположенных в Институте стандартов (NIST) и JILA. Иллюстрации Physorg |
Метрология сегодня основывается на использовании точных атомных часов, которые сделали возможными GPS и ГЛОНАСС. В том же Боулдере сотрудники JILA и Колорадского университета сумели объединить на практике два феномена – энтенглмент и точнейшие на сегодня атомные часы. С помощью последних удалось с невиданной до сих пор точностью сравнить ход трех атомных часов – на ионе алюминия, иттербиевых и классических стронциевых.
В экспериментах были использованы прямая и «ломаная» линии передачи сигналов. Длина первой, между JILA и колорадским отделением Института стандартов и технологий (NIST), составила 1,5 км; а второй, оптоволоконной, – 3,6 км. По ней передавались сигналы титан-сапфирового лазера, с помощью которых сравнивался ход алюминиевых и иттербиевых часов в институте и стронциевых в JILA. Максимальная разница «тиканья» составила всего 8 аттосекунд (8х10–18 с). Ученые считают, что полученный ими результат имеет огромное значение как для фундаментальной физики, так и практических разработок, например для создания нейросетей.
комментарии(0)