0
3482
Газета Наука Печатная версия

23.10.2018 15:54:00

Терагерцовый кремний

Традиционный материал электроники не желает уступать в соревновании с графеном


Терагерцовый импульс в графене.

Графен, открытый двумя нашими соотечественниками, Андреем Геймом и Константином Новоселовым, работающими в Манчестерском университете, уникален своим моноатомным слоем углерода. Электропроводность такого мономатериала близка к сверхпроводимости. Но у графена есть и другие преимущества по сравнению с кремнием, поэтому все ожидают, что он сменит классический силикон на троне микроэлектронных чипов.

Помимо этого графен в силу его механической прочности используют сегодня для защиты поверхностей археологических находок, подвергающихся воздействию атмосферных кислорода и агрессивных примесей. Так, сотрудники Иллинойского университета в г. Урбана-Шампань покрыли им средний деревянный «гроб» Тутанхамона, нанеся что-то вроде естественной патины, образующейся со временем на меди и бронзе. Разработанный ими метод химического осаждения они опробовали сначала, нанеся слой графена на поверхность палладиевой пластинки.

А в Технологическом университете шведского Гетеборга создали графеновое покрытие с выступающими «шипами», которые убивают микроорганизмы, препятствуя тем самым образованию бактериальных пленок. Последние представляют собой серьезное осложнение после пересадки органов и тканей.

Графен, согласно исследованиям сотрудников дрезденского Центра Гельмгольца и Эссенского университета в Дуйсбурге, может с высокой эффективностью конвертировать гигагерцовые колебания в терагерцовые, то есть увеличивать частоту в 1000 раз. «Графен представляет собой электронный материал с сильной нелинейностью», – пишут в журнале Nature авторы исследования. Использование графена вместо кремния обещает увеличить точность нынешних часов в тысячу раз, а также скорость прохождения информации. Неудивительно, что графен действительно сменит кремний, фундаментальные частоты которого не превышают 300–680 гигагерц.

229-14-4_b.jpg
Пара почти идентичных фотонов,
получаемых в круглых волноводах.

Но и кремниевые чипы не собираются сдаваться. Это доказали электронщики Университета Вандербилта в г. Нэшвил (США). Длины волн видимого света измеряются сотнями нанометров, а у инфракрасного излучения они достигают 1 микрометра (микрона). Вместе с коллегами из Технологического университета во французском г. Труа американцы создали на плоской поверхности объекты в виде галстука-бабочки размером всего лишь 12 нанометров. Удивительно, но эти «устройства» эффективно концентрируют свет, фокусируя его наподобие лупы.

Преимущество света перед электронами заключается в его значительно большей скорости распространения и в том, что фотоны не генерируют при этом тепла. Ученые не только «словили» и уменьшили длину волны света, сконцентрировав его, то есть увеличив плотность световой энергии, но и смогли надежно удерживать его. Свое достижение они сравнили со слоном, которого «втиснули» в холодильник, где он добровольно и остается. Тем самым открывается путь к созданию реально работающих оптоэлектронных цепей.

Для фундаментальной физики открывается еще одна возможность изучения взаимодействий света с материей, или фотоэффекта, за описание которого Альберту Эйнштейну была вручена Нобелевская премия еще в 1921 году.

229-14-5_b.jpg
Световые пики, «поднимающиеся» из структур в виде бабочки.
Иллюстрация Physorg

Кремний может оказаться весьма полезным и при «производстве» одиночных фотонов. Сейчас этого можно добиться методом глубокого охлаждения. Не удовлетворяет квантовых физиков то, что фотоны при этом получаются неидентичными друг другу. Это затрудняет проведение экспериментов и разработку инструментов квантовой информатики.

В Университете штата Мэриленд (США) на поверхности кремниевого чипа создали два круговых волновода. Фотоны в них вращаются по и против часовой стрелки. В итоге получился сверхминиатюрный источник квантового света. Получаемые пары фотонов почти идеальны с точки зрения их квантовых свойств. Немаловажно и то, что кремниевые петли позволяют генерировать пары при комнатной температуре, что также позволяет быстро и дешево исследовать взаимодействие света с различными материалами. А глубокое знание механизмов этих процессов позволит быстрее создавать оптоэлектронные технологии и развивать квантовую информатику.


Оставлять комментарии могут только авторизованные пользователи.

Вам необходимо Войти или Зарегистрироваться

комментарии(0)


Вы можете оставить комментарии.


Комментарии отключены - материал старше 3 дней

Читайте также


В ноябре опросы предприятий показали общую стабильность

В ноябре опросы предприятий показали общую стабильность

Михаил Сергеев

Спад в металлургии и строительстве маскируется надеждами на будущее

0
1190
Арипова могут переназначить на пост премьер-министра Узбекистана

Арипова могут переназначить на пост премьер-министра Узбекистана

0
735
КПРФ заступается за царя Ивана Грозного

КПРФ заступается за царя Ивана Грозного

Дарья Гармоненко

Зюганов расширяет фронт борьбы за непрерывность российской истории

0
1437
Смена Шольца на "ястреба" Писториуса создает ФРГ ненужные ей риски

Смена Шольца на "ястреба" Писториуса создает ФРГ ненужные ей риски

Олег Никифоров

Обновленная ядерная доктрина РФ позволяет наносить удары по поставщикам вооружений Киеву

0
1396

Другие новости